3.5.28 \(\int x^2 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x) \, dx\) [428]

Optimal. Leaf size=194 \[ \frac {\sqrt {1-a^2 x^2}}{8 a^3}-\frac {\left (1-a^2 x^2\right )^{3/2}}{12 a^3}-\frac {x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)}{8 a^2}+\frac {1}{4} x^3 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)-\frac {\text {ArcTan}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right ) \tanh ^{-1}(a x)}{4 a^3}-\frac {i \text {PolyLog}\left (2,-\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{8 a^3}+\frac {i \text {PolyLog}\left (2,\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{8 a^3} \]

[Out]

-1/12*(-a^2*x^2+1)^(3/2)/a^3-1/4*arctan((-a*x+1)^(1/2)/(a*x+1)^(1/2))*arctanh(a*x)/a^3-1/8*I*polylog(2,-I*(-a*
x+1)^(1/2)/(a*x+1)^(1/2))/a^3+1/8*I*polylog(2,I*(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a^3+1/8*(-a^2*x^2+1)^(1/2)/a^3-1
/8*x*arctanh(a*x)*(-a^2*x^2+1)^(1/2)/a^2+1/4*x^3*arctanh(a*x)*(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 194, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6157, 6163, 267, 6097, 272, 45} \begin {gather*} -\frac {\text {ArcTan}\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right ) \tanh ^{-1}(a x)}{4 a^3}-\frac {i \text {Li}_2\left (-\frac {i \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{8 a^3}+\frac {i \text {Li}_2\left (\frac {i \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{8 a^3}-\frac {x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)}{8 a^2}+\frac {1}{4} x^3 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)-\frac {\left (1-a^2 x^2\right )^{3/2}}{12 a^3}+\frac {\sqrt {1-a^2 x^2}}{8 a^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[1 - a^2*x^2]*ArcTanh[a*x],x]

[Out]

Sqrt[1 - a^2*x^2]/(8*a^3) - (1 - a^2*x^2)^(3/2)/(12*a^3) - (x*Sqrt[1 - a^2*x^2]*ArcTanh[a*x])/(8*a^2) + (x^3*S
qrt[1 - a^2*x^2]*ArcTanh[a*x])/4 - (ArcTan[Sqrt[1 - a*x]/Sqrt[1 + a*x]]*ArcTanh[a*x])/(4*a^3) - ((I/8)*PolyLog
[2, ((-I)*Sqrt[1 - a*x])/Sqrt[1 + a*x]])/a^3 + ((I/8)*PolyLog[2, (I*Sqrt[1 - a*x])/Sqrt[1 + a*x]])/a^3

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6097

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[-2*(a + b*ArcTanh[c*x])*(
ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d])), x] + (-Simp[I*b*(PolyLog[2, (-I)*(Sqrt[1 - c*x]/Sqrt[1 + c*x
])]/(c*Sqrt[d])), x] + Simp[I*b*(PolyLog[2, I*(Sqrt[1 - c*x]/Sqrt[1 + c*x])]/(c*Sqrt[d])), x]) /; FreeQ[{a, b,
 c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0]

Rule 6157

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(
m + 1)*Sqrt[d + e*x^2]*((a + b*ArcTanh[c*x])/(f*(m + 2))), x] + (Dist[d/(m + 2), Int[(f*x)^m*((a + b*ArcTanh[c
*x])/Sqrt[d + e*x^2]), x], x] - Dist[b*c*(d/(f*(m + 2))), Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x], x]) /; FreeQ[
{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2]

Rule 6163

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(-f)*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcTanh[c*x])^p/(c^2*d*m)), x] + (Dist[b*f*(p/(c*m)), Int[(f*x)^(m
 - 1)*((a + b*ArcTanh[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] + Dist[f^2*((m - 1)/(c^2*m)), Int[(f*x)^(m - 2)*(
(a + b*ArcTanh[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p
, 0] && GtQ[m, 1]

Rubi steps

\begin {align*} \int x^2 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x) \, dx &=\frac {1}{4} x^3 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)+\frac {1}{4} \int \frac {x^2 \tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx-\frac {1}{4} a \int \frac {x^3}{\sqrt {1-a^2 x^2}} \, dx\\ &=-\frac {x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)}{8 a^2}+\frac {1}{4} x^3 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)+\frac {\int \frac {\tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx}{8 a^2}+\frac {\int \frac {x}{\sqrt {1-a^2 x^2}} \, dx}{8 a}-\frac {1}{8} a \text {Subst}\left (\int \frac {x}{\sqrt {1-a^2 x}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {1-a^2 x^2}}{8 a^3}-\frac {x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)}{8 a^2}+\frac {1}{4} x^3 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)-\frac {\tan ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right ) \tanh ^{-1}(a x)}{4 a^3}-\frac {i \text {Li}_2\left (-\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{8 a^3}+\frac {i \text {Li}_2\left (\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{8 a^3}-\frac {1}{8} a \text {Subst}\left (\int \left (\frac {1}{a^2 \sqrt {1-a^2 x}}-\frac {\sqrt {1-a^2 x}}{a^2}\right ) \, dx,x,x^2\right )\\ &=\frac {\sqrt {1-a^2 x^2}}{8 a^3}-\frac {\left (1-a^2 x^2\right )^{3/2}}{12 a^3}-\frac {x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)}{8 a^2}+\frac {1}{4} x^3 \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)-\frac {\tan ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right ) \tanh ^{-1}(a x)}{4 a^3}-\frac {i \text {Li}_2\left (-\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{8 a^3}+\frac {i \text {Li}_2\left (\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{8 a^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 160, normalized size = 0.82 \begin {gather*} \frac {\sqrt {1-a^2 x^2} \left (1+2 a^2 x^2+3 a x \tanh ^{-1}(a x)+6 a x \left (-1+a^2 x^2\right ) \tanh ^{-1}(a x)-\frac {3 i \tanh ^{-1}(a x) \left (\log \left (1-i e^{-\tanh ^{-1}(a x)}\right )-\log \left (1+i e^{-\tanh ^{-1}(a x)}\right )\right )}{\sqrt {1-a^2 x^2}}-\frac {3 i \left (\text {PolyLog}\left (2,-i e^{-\tanh ^{-1}(a x)}\right )-\text {PolyLog}\left (2,i e^{-\tanh ^{-1}(a x)}\right )\right )}{\sqrt {1-a^2 x^2}}\right )}{24 a^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[1 - a^2*x^2]*ArcTanh[a*x],x]

[Out]

(Sqrt[1 - a^2*x^2]*(1 + 2*a^2*x^2 + 3*a*x*ArcTanh[a*x] + 6*a*x*(-1 + a^2*x^2)*ArcTanh[a*x] - ((3*I)*ArcTanh[a*
x]*(Log[1 - I/E^ArcTanh[a*x]] - Log[1 + I/E^ArcTanh[a*x]]))/Sqrt[1 - a^2*x^2] - ((3*I)*(PolyLog[2, (-I)/E^ArcT
anh[a*x]] - PolyLog[2, I/E^ArcTanh[a*x]]))/Sqrt[1 - a^2*x^2]))/(24*a^3)

________________________________________________________________________________________

Maple [A]
time = 1.38, size = 175, normalized size = 0.90

method result size
default \(\frac {\sqrt {-\left (a x -1\right ) \left (a x +1\right )}\, \left (6 a^{3} x^{3} \arctanh \left (a x \right )+2 a^{2} x^{2}-3 a x \arctanh \left (a x \right )+1\right )}{24 a^{3}}-\frac {i \ln \left (1+\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right ) \arctanh \left (a x \right )}{8 a^{3}}+\frac {i \ln \left (1-\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right ) \arctanh \left (a x \right )}{8 a^{3}}-\frac {i \dilog \left (1+\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )}{8 a^{3}}+\frac {i \dilog \left (1-\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )}{8 a^{3}}\) \(175\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*arctanh(a*x)*(-a^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/24/a^3*(-(a*x-1)*(a*x+1))^(1/2)*(6*a^3*x^3*arctanh(a*x)+2*a^2*x^2-3*a*x*arctanh(a*x)+1)-1/8*I*ln(1+I*(a*x+1)
/(-a^2*x^2+1)^(1/2))*arctanh(a*x)/a^3+1/8*I*ln(1-I*(a*x+1)/(-a^2*x^2+1)^(1/2))*arctanh(a*x)/a^3-1/8*I*dilog(1+
I*(a*x+1)/(-a^2*x^2+1)^(1/2))/a^3+1/8*I*dilog(1-I*(a*x+1)/(-a^2*x^2+1)^(1/2))/a^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctanh(a*x)*(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*x^2*arctanh(a*x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctanh(a*x)*(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*x^2*arctanh(a*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \operatorname {atanh}{\left (a x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*atanh(a*x)*(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(x**2*sqrt(-(a*x - 1)*(a*x + 1))*atanh(a*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctanh(a*x)*(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*x^2*arctanh(a*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^2\,\mathrm {atanh}\left (a\,x\right )\,\sqrt {1-a^2\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*atanh(a*x)*(1 - a^2*x^2)^(1/2),x)

[Out]

int(x^2*atanh(a*x)*(1 - a^2*x^2)^(1/2), x)

________________________________________________________________________________________